
J .  Fluid Mech. (1965), vol. 21, part 3, pp.  565-576 

Printed in Great Britain 

565 
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The problem of the stability and growth of disturbances in a fluid with time- 
dependent heating is investigated. The analysis is restricted to the case when the 
temperature gradient is large in a layer which is narrow by comparison with the 
overall depth of the fluid. An approximate method of solution is presented. 
Results of computations are also presented which illustrate the method of 
solution and the essential features of the problem. 

1. Introduction 
The present investigation is a study of the stability and growth of disturbances 

in a fluid layer in which the temperature gradient may be a function of depth and 
time. This particular problem was suggested by a crude experiment which was 
performed in order to gain some understanding of the temperature changes and 
convective motions near the surface of the ocean. 

The experiment was as follows. A small tank, approximately lOcm deep, 
10 em wide, and 20 cm in length, was filled with water and covered. The tank was 
left standing until all convective currents had decayed and the water was at  a 
uniform temperature throughout. The cover was then taken off. At this time the 
water began to cool by evaporation. The temperature was measured at various 
depths by thermistors. The surface temperature was measured by a radiometer. 
The density gradients were observed by a Schlieren system. By use of this 
Schlieren system, a dark narrow band near the surface was observed initially. 
This band increased in thickness with time. After 15 or 2Osec, when the dark 
layer was several mm thick, small drops began to appear on the lower side of 
this layer. These drops began to grow and, after approximately 60sec, broke 
away from the upper layer, gradually fell into the warmer water below, and 
diffused as they fell to the bottom. The formation and breaking away of these 
drops continued at irregular intervals. 

Radiometer readings showed that the surface was cooled approximately 0.5" C 
by the evaporation. The effective depth (the depth at which the temperature 
difference decreased to l / e  of its surface value) to which this cooling penetrated 
varied with time, of course. After 15 see, the effective depth was approximately 
3mm and after 60sec it was about 7mm. 

The measurements were crude since this was just an exploratory experiment. 
However the following points can be made: (a) the temperature before instability 
began, or a t  least before the disturbance became large, changed rapidly with 



566 Wilber€ Lick 

depth in a narrow layer near the surface; ( 6 )  the disturbances grew rapidly in time 
by comparison with the rate a t  which the unperturbed temperature (the tem- 
perature in the absence of convection) changed. 

Questions which presumably may be asked in connexion with the initial 
formation and growth of the drops are: under the above conditions, (a )  when 
does instability begin, and ( 6 )  how do initial disturbances grow with time? 

The present analysis does not attempt to duplicate the exact conditions of the 
above experiment, but is a general investigation of the stability and growth of 
disturbances in a fluid layer characterized by a temperature gradient which is 
large in a layer narrow by comparison with the depth of the fluid and in which 
disturbances grow rapidly by comparison with changes in the unperturbed 
temperature. This type of analysis is important not only in understanding 
phenomena near the surface of oceans but also in stellar atmospheres (Gribov & 
Gurevich 1957) and in re-entry heating problems (Goldstein 1959). 

Although much work has been done on the problem of the stability of a fluid 
layer, the restrictions and approximations have been such that they are not 
directly applicable to the present problem. The earliest experimental investiga- 
tions were by Thomson (1 882) and BBnard (1 900). The early theoretical work 
was done by Rayleigh (1916), Jeffreys (1926, 1928), Low (1929), and Pellew & 
Southwell (1940). These investigations were chiefly concerned with the stability 
of a fluid layer in which the unperturbed state was characterized by a uniform 
temperature gradient. Moreover, these investigations were restricted to the 
questions of the onset of instability and the conditions a t  marginal stability. 
This work has been reviewed by Ostrach (1957) and Chandrasekhar (1961). 

More recent work has been concerned with the stability of a fluid layer when 
the temperature gradient is not constant. In  addition, the question of the rate 
of growth of disturbances has been examined. Morton (1957) has investigated the 
growth of disturbances when the temperature gradient was a slowly varying 
function of depth but independent of time. Gribov & Gurevich (1957) have 
obtained approximate limiting solutions for the onset of instability for the 
problem of an unstable layer with a uniform temperature gradient bounded by 
a stable layer. Goldstein (1959) has analysed the stability of a fluid layer with 
time-dependent heating. However, his method of solution consists of an analysis 
by Fourier series and is restricted to the case when the temperature is a slowly 
varying function of depth. These last three papers will be discussed more exten- 
sively in the following sections in connexion with the present investigation. 

A general analysis of the present problem and the approximations involved are 
presented in the following section. The results of computations and a discussion 
of these results are given in 3 3. 

2. General theory 
Consider a fluid layer bounded above and below but infinite in the horizontal 

direction. The boundary conditions a t  the upper and lower surfaces are such that 
the temperature of the fluid in the unperturbed state is dependent on both depth 
and time but constant in the horizontal direction. The depth z* will be measured 
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vertically downwards from the upper surface. The co-ordinates x* and y* lie in 
the horizontal plane. The thickness of the layer is d. 

It is assumed that the solution for the unperturbed state, the state with no 
convective motion, is known. In  order to determine the solution when con- 
vective motions are present, although small so that squares and products of the 
velocities and temperature may be neglected, the perturbation equations for the 
velocities and temperatures must be obtained. These perturbation equations 
have been derived for the case when the unperturbed temperature is an arbitrary 
function of depth and time by Goldstein and the approximations involved are 
discussed there. These equations are presented below. 

In  the derivation, it is assumed that the dependence of all perturbation 
quantities on x* and y* has the form exp (ikzx* + ikv y*) where k2 = k: + ki is the 
wave-number of the disturbance. The relationship between the periodic solutions 
implied by the above relations and the cellular patterns observed experimentally 
is discussed by Stuart (1964). The perturbation temperature T* and the perturba- 
tion vertical velocity w* can be written as 

T* = TOO@*, t*) exp (ilczz* +ikvy*), 

w* = ( K i d )  W(x*, t*) exp (ilc,z* +ik,y*), 
(1) 

(2) 

where To is a reference temperature, K is the thermal diffusivity, t* is the time, 
and 8 and W are dimensionless quantities proportional respectively to the 
perturbation temperature and vertical velocity. 

A single equation governing W can be written as 

where z = z*/d, a = lcd, t = vt*/d2, P = V / K  and is the Prandtl number, v is the 
kinematic viscosity, and /3 is a dimensionless temperature gradient given by 

(4) 

where g is the acceleration due to gravity, a is the coefficient of thermal expansion, 
and aT*/az* is the temperature gradient in the undisturbed fluid. An alternate 
form of (3) can be written as 

p = - ( g a a W / ~ v )  aT*/aZ*, 

Auxiliary equations which are useful in the analysis are 

($-a2) ( g - a z - ; )  w = F 

and 

where F = (gaToa2d3/~v) 8. 
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2.1. Reduction to problem with static temperature gradient, p = p(z) 
If the unperturbed temperature gradient ,8 were independent of time and a 
function only of z, the solution of (3) could immediately be written as 

W(z,  t )  = w ( z )  eat, (9) 

where B is a constant. An ordinary differential equation for w ( z )  would then be 
obtained which would lead to an eigenvalue problem which can be solved in 
a straightforward manner. 

The observation that disturbances grow rapidly by comparison with changes 
in the unperturbed temperature indicate that a first approximation to (3), when 
p = p(z, t ) ,  could be obtained by assuming that the rate of growth of disturbances 
at each instant of time depended only on the temperature gradient at that 
instant. This conjecture leads to an asymptotic method of solution of (3) in 
which the first approximation is simply that described above. The method is 
analogous to asymptotic approximations devised for ordinary differential 
equations (Jeffreys 1962). 

Equation (9) suggests the substitution 

W(z,  t )  = w(z,  t )  ea@@, (10) 

where a is a large parameter. If this is substituted into (3), or more conveniently 
into (5), and only the highest powers of a retained in each term, one obtains 

( a 2 / a ~ 2 - a 2 ) 3 w - ~ ( P +  1)  ( a 2 / a ~ 2 - ~ 2 ) w + a 2 p ( a 2 / a ~ 2 - ~ 2 ) ~  = - p w ,  (11)  

where = ad$/&. Since no derivatives of o with respect to time appear in the 
above expression, t can be considered as a parameter. The above equation can 
then be considered as an ordinary differential equation for w with derivatives 
only with respect to z. 

To this approximation, the problem has now been reduced to solving (11) at 
successive times tin order to find w(z ,  t )  and a(t). This will be done in the following 
section. Once B is known, $ can be found from 

t 

0 
a$ = 1 crdt (12) 

and therefore W can be found from (10). 
By retaining the next lowest powers of a, one obtains a partial differential 

equation for w from which a correction to the first-order solution can be esti- 
mated. Since this correction depends on the first-order solution, it will be 
discussed in the following section. 

2.2. Method of solution when ,8 = p(z) 
In  the type of problem that is being considered in this paper, the temperature 
profile at any instant will be of the general shape shown in figure 1, a practically 
linear function of depth throughout most of the fluid layer (the gradient may be 
either positive or negative) with a rapid variation in temperature near the surface. 
In  order to simplify the problem still further, the actual temperature profile will 
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be approximated by two linear segments as shown in figure 2. The subscript a 
will denote quantities for z > -6, and the subscript b will denote quantities for 
z < - e. The point of intersection of the two temperature gradients at 8 is deter- 
mined by requiring that the area formed by both the exact and approximate 
temperature profiles and a vertical line through To, say, be the same. This ensures 
that the integrated buoyancy force will be the same in both cases. 

z=-l I 

To 
FIGURE 1. General shape of the temperature profile at any time t .  To is the temperature 
of the lower surface, considered to be a constant. T2 is the time-varying temperature of 
the upper surface. T, is the surface temperature as calculated by extrapolation from the 
temperature and temperature gradient at z = - 1. 

FIGURE 2. Approximate temperature profile consisting of two linear segments. The solid 
line is the actual temperature profile and the dashed lines are the approximate temperature 
profiles. 

In  the regions z > - e and z < - e, the equations for w are now 

(@/a$ - a2) (a2 /az2  - a2 - a) ( P/a.z2 - u2 - Pa) W ,  = - Pawu, 

(iP/az2 - a2) ( 8 / a z 2  - a2 - a)  (@/a22 - a2 - Pa) o b  = - ,8b wb ,  
(13) 

(14) 

where ,8, and pb are now constants. The solutions to these equations can then 
be written as 3 3 

w, = C A,eynB+ B,e-Yne, (15) 
n=l n=l 

3 3 

n=l n= 1 
wb = C C,ehnB+ Dne++, 

where the yn’s and An’s are roots of the equations 

(yz-az) (y2-a2--) (y2-u2-Pa) = -pa, (17) 

(h2-a2)(A2-a2-~)(h2--a2-Pcr) = (18) 
The constants A,, B,, C,, and Dn are determined from the boundary conditions. 
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The boundary conditions at z = 0 and x = - 1 of course depend on the 
particular problem, for example whether the fluid is bounded by a rigid or free 
surface, the manner of heating of the fluid, etc. In  order to separate the effects 
of time-dependent heating from other effects, the simplest boundary conditions 
will be chosen. These are 

w = 0, (19) 

(20) z = 0, - 1: a 2 w p z 2  = 0, 1 a 4 w p z 4  = 0. (21) 

These conditions correspond to the statements that at the boundaries the vertical 
velocity is zero, no viscous shear stresses are present, and the perturbation 
temperature is zero, i.e. the temperatures of the surfaces are prescribed. 
Although these boundary conditions are not physically realistic, they do enable 
the present analysis to be compared with limiting solutions of other investiga- 
tions, for which other boundary conditions have also not been investigated. The 
effect of various boundary conditions has been discussed by Chandrasekhar 
(1961) and Sparrow, Goldstein & Jonsson (1964). 

The boundary conditions a t  the interface x = - E are simply that the velocities 
u, v, and w are continuous, the viscous shear stresses are continuous, and the 
perturbation temperature and temperature gradient are continuous. These con- 
ditions lead to the requirement that w and its first five derivatives with respect 
to z be continuous at z = - E .  

The boundary conditions a t  x = 0, - 1 allow w, and wb to be written as 

3 

n= 1 

3 

n=l 

w,= z AAsinhy,z, 

wb = z C; sinhh,(z + 1). (23) 

The conditions at z = - 6 require that 

wa-wb = 0 (24) 

and anw,lazn - awb/azn  = o (n = 1, . . . , 5 ) .  (25) 

In general these conditions cannot be satisfied by solutions to the above 
equations for arbitrary v. The requirement that the equations allow non-trivial 
solutions satisfying the boundary conditions leads to an eigenvalue problem 
for v. 

The condition that (24) and (25) have a non-vanishing solution is that the 
six-by-six determinant 

= 0, (26) 
where A a? .. = y"-l 3 sinh ( - y j s )  if i is odd, 

= 7j-l cosh ( - yje) if i is even, 

( j  = 4,5,6) .  
= - hjzl, cosh (Ajp3( 1 - E ) )  

= - A ~ I ;  sinh {hj-3( 1 - E ) )  

if i is even 
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The method of finding the eigenvalue a when Pa, Pb, a, and E are predetermined 
values is then the following. For the given values of Pa, Pb, a, and 8, the values 
of the yn’s and An’s are found from (17) and (1 8). The parameter a is then varied 
until, when substituted into (26) with the appropriate yn’s and An’s, the value of 
the determinant is approximately equal to zero. All modes for a particular wave- 
number can be found in this manner. However, since the growth rate is largest 
for the lowest mode, only the lowest mode will be considered. Once the eigen- 
value a is determined, the AA’s and CA’s (one of these constants, A; say, is 
arbitrary) can be determined from five of the six relations, (24) and (25). 

I f  we let 
F(z ,  t )  = f ( z ,  t )  ea@@) (2.27) 

the perturbation temperature f can be determined from the equation 

( a 2 / a 2 2  - a2) (a2/az2 - a2 - a) w = f, 

which can be obtained from (6). 

3. Results and discussion 
As indicated in Q 2.1, a complete solution to the problem when /3 = / 3 (x ,  t )  

requires that a series of problems be solved in which /3 is a function only of depth 
and not of time. A general solution for arbitrary P(z,t) would involve a pro- 
hibitive amount of labour. The computations that were made were chosen to 
illustrate the method of solution and the essential features of the problem. 

The growth rate a of disturbances of various wave-numbers a as a function 
of the Rayleigh number R when the temperature gradient is uniform throughout 
and independent of time is shown in figures 3 and 4. These calculations were 
made for the following reasons. 

(1)  To check the present calculations against previous calculations. The most 
extensive calculations made previously are those of Morton which are for P = 1.0 
and for small Rayleigh number R, where R = gad3(T2 - T O ) / ~ v .  They agree with 
the present calculations. 

(2) To show the general effect of Prandtl number. For gases, the Prandtl 
number is approximately 1 and for water at room temperature, the Prandtl 
number is approximately 7. The calculations were made for these two cases. 

(3) To extend previous calculations to high Rayleigh number. For the condi- 
tions of the previously mentioned experiment (T2 - To = 0.5” C, d = 10 em), the 
Rayleigh number is 0(108) or approximately 105R,, where 22, = 657.5 is the 
critical Rayleigh number when convective instability begins in the case when 
the temperature gradient is uniform. Since the method of finding the eigenvalue 

is a trial-and-error procedure, these computations are also useful to indicate 
a reasonable trial solution when /3 is not a linear function of depth. 

The general effect of Prandtl number can be seen from figure 3 where the growth 
rates for both P = 1.0 and 7.0 have been plotted. The effect of large Prandtl 
number is to reduce the growth rate significantly (for positive growth rates), 
although the general variation of a with a is similar. The critical wave-number for 
marginal stability is not affected by Prandtl number. 
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a 
FIGURE 3. The growth rate c of disturbances of wave-number a when the tempereture is 
constant for Rayleigh numbers R = Re, 10Re, 100Re. The growth rate for P = 1.0 is given 
by the solid lines, and for P = 7.0 by the dashed lines. 

104 ,- -a 

U 

FIGURE 4. The growth rate u of disturbances of wave-number a when the temperature 
gradient is a constant independent of depth and time for high Rayleighnumbers, R = 1OaRC, 
los R,. 104R,, 105R,, and for P = 7.0. 
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FIGTJRE 5. The growth rate of disturbances for the wave-number a = 8.0 as a function of E ,  

the thickness of the layer in which the temperature is changing rapidly. R, = 2 x 103R,, 
Rb = O*lRc. 
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FIGURE 6. The growth rate of disturbances when the temperature gradient consists of two 
linear segments. R, = 2 x lOSR,, Rb = O.lRc; E = 0.02, 0.20, 1.0. 
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The growth rates for large Rayleigh number are shown in figure 4 for P = 7.0. 
It can be seen that increasing R increases the wave-number a t  which the maxi- 
mum growth rate occurs. 

Figures 5 and 6 attempt to show the effect of a non-linear temperature gradient 
(independent of time) on the growth of disturbances. In  all cases, the Prandtl 

1 -0 

0.8 

0 6  

W 

0.4 

0.2 

0 0  

z 
FIGURE 7 

gradient and for the wave-number a = 12.0. E = 0.02, 0.20, 0.40. 

temperature gradient and for the wave-number a = 12.0. e = 0.02, 0.20, 0.40. 

FIGURE 7. The vertical velocity w &s a function of depth z for a non-linear temperature 

FIGURE 8. The perturbation temperature f as a function of depth z for a non-linear 

number is taken to be 7.0 and the overall Rayleigh number is R, = 2 x 103R,. 
The temperature profile is assumed to consist of two linear segments. A Rayleigh 
number for each segment can be calculated on the basis of the overall depth d. 
R, was maintained at O-IR,, and R, was varied so as to keep R, constant but 
change the effective depth e of the upper layer. R, = const. implies a constant 
temperature difference between the two surfaces. 

Figure 5 shows the variation of CT as a function of e for a particular wave- 
length, a = 8.0. It is to be noted that the maximum growth rate occurs for e 
approximately equal to 0.25 and is significantly greater than when the tempera- 
ture gradient is uniform ( E  = 1.0). This behaviour is typical of all wavelengths 



Instability of a JEuid layer with time-dependent heating 675 

and shows that the growth of disturbances when B =+ const. may be significantly 
different from when /3 = const. As the effective depth decreases, the growth rate 
also decreases and becomes zero a t  approximately e = 0.016. 

Figure 6 shows the variation of a as a function of a for three cases, e = 0.02, 
E = 0-20, and e = 1.0. For e = 0.02 and e = 0.20, the wave-number for maximum 
growth rate is significantly larger than when e = 1.0. 

Figures 7 and 8 show the variation of w and f with depth for the conditions 
a = 12.0 and e = 0-40,0-20 and 0.02. Of course, when e = 1.0, both w andf have 
a simple sine dependence on z. Decreasing e decreases the depth for which either 
w orf is maximum. It can be seen that w andf are maximum at different depths 
for the same E ,  i.e. the velocity can penetrate into the lower stable layer more 
easily than the temperature. By tracing the path of illuminated particles the 
penetration of the velocity could be observed experimentally. The temperature 
gradient (or density gradient) could be measured by means of a Schlieren 
system. 

The behaviour of the solution as implied by figures 5-8 can be interpreted in 
more physical terms. When the unperturbed temperature gradient is large in a 
narrow layer, i.e. when e is small, it is to be expected that the boundary conditions 
at z = - 1 should not affect the growth of disturbances. What should be important 
are the local temperature gradients and conditions. From figure 5 it can be seen 
that a = 0 for e = 0.016. This corresponds to a Rayleigh number of approxi- 
mately 300 when calculated on the basis of the depth of this narrow layer. The 
critical Rayleigh number of this layer when it is specified that the vertical velocity 
is zero at the interface is 657.5. Removing this restriction on the velocity increases 
the freedom of motion of the fluid and decreases its stability. As e increases, the 
Rayleigh number increases, since R N e3, decreasing the stability even though the 
temperature gradient decreases. Eventually however the boundary conditions 
at z = - 1 become important and increase the stability of the fluid. 

From the previous calculations one can find w(z ,  t )  and a(t) for any constant of 
time t .  The solution for w can then be found from ( 1 2 )  and (10) once E ( t )  has been 
determined for each particular problem considered. Note that to the first 
approximation, the variation of w with depth is the same as the case when /3 is 
independent of time, although the magnitude of w is different, being given by 
the factor &(I). 

The next higher approximation gives a correction term proportional to 

For the fastest growing disturbances, in which we are mainly interested, this 
correction is approximately a-*. This correction is similar to the one found for 
ordinary differential equations (Jeffreys 1962). Of course this correction is large 
when a is small, i.e. when the fluid is near marginal stability and disturbances 
are growing slowly. However this only occurs for small time when the un- 
perturbed temperature has penetrated only into a very thin layer. If disturb- 
ances occur for larger time, when the fluid is highly unstable, the present theory 
should give an adequate description of the growth. 

The calculations have been made for the case when the fluid in the lower layer 
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is moderately stable, R, = 0-lR,. Differences can be expected when the lower 
layer is marginally stable, R, N- R,, or when the lower layer is very stable, 
R, 4 R,. In  the first case the fluid from the upper layer would be expected to 
penetrate more deeply into the lower layer while the reverse would be true in the 
second case. 

Implicitly it has been assumed throughout that cr is real. This has been proved 
by Morton for the case of a temperature gradient that is negative throughout the 
fluid. However, CT may be complex when the temperature gradient is positive 
at any point. In  this case the eigenvalue problem becomes much more difficult 
but is solvable in the same manner as that presented above. 
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